. D G ] 1 5 Se p 20 07 Ricci iterations on Kähler classes
نویسنده
چکیده
In this paper we consider the dynamical system involved by the Ricci operator on the space of Kähler metrics. A. Nadel has defined an iteration scheme given by the Ricci operator for Fano manifold and asked whether it has some nontrivial periodic points. First, we prove that no such periodic points can exist. We define the inverse of the Ricci operator and consider the dynamical behaviour of its iterates for a Fano KählerEinstein manifold. In particular we show that the iterates do converge to the Kähler-Ricci soliton for toric manifolds. Finally, we define a finite dimensional procedure to give an approximation of Kähler-Einstein metrics using this iterative procedure and apply it for P blown up in 3 points.
منابع مشابه
Se p 20 07 Ricci iterations on Kähler classes
In this paper we consider the dynamical system involved by the Ricci operator on the space of Kähler metrics. A. Nadel has defined an iteration scheme given by the Ricci operator for Fano manifold and asked whether it has some nontrivial periodic points. First, we prove that no such periodic points can exist. We define the inverse of the Ricci operator and consider the dynamical behaviour of it...
متن کاملSe p 20 09 THE KÄHLER - RICCI FLOW THROUGH SINGULARITIES 1
We prove the existence and uniqueness of the weak Kähler-Ricci flow on projective varieties with log terminal singularities. It is also shown that the weak Kähler-Ricci flow can be uniquely continued through divisorial contractions and flips if they exist. We then propose an analytic version of the Minimal Model Program with Ricci flow.
متن کاملTotally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
متن کاملar X iv : 0 90 2 . 28 05 v 1 [ m at h . D G ] 1 7 Fe b 20 09 Computing the density of Ricci - solitons on CP 2 ♯ 2 CP 2
This is a short note explaining how one can compute the Gaussian density of the Kähler-Ricci soliton and the conformally Kähler, Einstein metric on the two point blow-up of the complex projective plane.
متن کاملRicci-flat K Ahler Metrics on Canonical Bundles
We prove the existence of a (unique) S-invariant Ricci-flat Kähler metric on a neighbourhood of the zero section in the canonical bundle of a realanalytic Kähler manifold X, extending the metric on X. In the important paper [3], Calabi proved existence of Ricci-flat Kähler metrics on two classes of manifolds: a) cotangent bundles of projective spaces; b) canonical bundles of Kähler-Einstein man...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008